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Problem 1. Let a and b be positive integers and c be a positive real number satisfying

a+ 1

b+ c
=
b

a
.

Prove that c ≥ 1 holds.
(Karl Czakler)

Solution. The following equations are equivalent to the given equation:

a2 + a = b2 + bc

4a2 + 4a+ 1 = 4b2 + 4bc+ 1

(2a+ 1)2 = 4b2 + 4bc+ 1.

Assume to the contrary that c < 1 holds. This yields

(2b)2 = 4b2 < (2a+ 1)2 = 4b2 + 4bc+ 1 < 4b2 + 4b+ 1 = (2b+ 1)2.

This is a contradiction as the square of an integer cannot lie strictly between two consecutive square
numbers. Therefore, c ≥ 1 holds and, for instance, a = b yields c = 1 and therefore there is a solution
of the equation with c ≥ 1.

(Karl Czakler)

Problem 2. Let ABC be an isosceles triangle with AC = BC and circumcircle k. The point D lies on
the shorter arc of k over the chord BC and is different from B and C. Let E denote the intersection of
CD and AB.

Prove that the line through B and C is a tangent of the circumcircle of the triangle BDE.
(Karl Czakler)

Solution. We denote the center of the circumcircle of the triangle BDE by M and ∠BAC = ∠CBA
by α. Since the quadrilateral ABDC is cyclic, we obain ∠BDE = α. By the inscribed angle theorem,
∠BME = 2α and thus ∠EBM = ∠MEB = 90◦ − α. Therefore,

180◦ = ∠CBA+ ∠MBC + ∠EBM = α + ∠MBC + 90◦ − α = ∠MBC + 90◦

holds and we get
∠MBC = 90◦,

completing the proof.
(Karl Czakler)

Problem 3. The numbers 1, 2, . . . , 2020 und 2021 are written on a blackboard. The following operation
is executed:
Two numbers are chosen, both are erased and replaced by the absolute value of their difference.
This operation is repeated until there is only one number left on the blackboard.

(a) Show that 2021 can be the final number on the blackboard.
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Figure 1: Problem 2

(b) Show that 2020 cannot be the final number on the blackboard.

(Karl Czakler)

Solution. (a) Let us first choose the following 1010 pairs of numbers:

(1, 2); (3, 4); . . . ; (2019, 2020).

The absolute value of the difference within each of these pairs is 1. After applying the operation
for each of these pairs, the number 2021 and 1010 times the number 1 remain on the blackboard.
Now we execute the given operation 505 times with pairs of the form (1, 1). Then the number
2021 and 505 times the number 0 remain on the blackboard. As 2021− 0 = 2021 and 0− 0 = 0,
we end up with 2021 as the final number on the board after additional 505 operations, regardless
of the pairs we pick at each step. Remark. Here we have just given one example among several
possible choices of building pairs and ending up with 2021.

(b) We prove a more general statement: The final remaining number on the blackboard cannot be
even.

As
a− b ≡ a+ b (mod 2),

we obtain that the parity of the sum of all numbers on the board is an invariant throughout the
game. At the beginning, the sum of the numbers on the blackboard is

2021 · 2022
2

= 2021 · 1011,

an odd number. Therefore, the final number on the board must be odd as well. In particular,
2020 cannot be the final number on the blackboard.

(Karl Czakler)

Problem 4. Determine all triples (x, y, z) of positive integers satisfying

x | (y + 1), y | (z + 1) and z | (x+ 1).

(Walther Janous)
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Answer. There are ten triples satisfying the three conditions. They are given by (1, 1, 1), (1, 1, 2),
(1, 3, 2), (3, 5, 4) and their cyclic permutations.

Solution. For the sake of readability, we use the notation a | b+ c instead of a | (b+ c) throughout the
proof.

Without loss of generality, let x be the smallest of the three numbers (or one of the smallest), i.e.
x ≤ y and x ≤ z. From z | x+ 1 we obtain x ≤ z ≤ x+ 1. Thus we have to consider two cases.

• Case 1. Let z = x. Then z = x | x + 1 leads to x = z = 1 and y | z + 1 = 2. Therefore y = 1 or
y = 2, and we get the two solutions (1, 1, 1) and (1, 2, 1).

• Case 2. Let z = x + 1. Then the two conditions x | y + 1 and y | x + 2 must be fulfilled. In
particular, we obtain x ≤ y + 1 and y ≤ x + 2. This yields x − 1 ≤ y ≤ x + 2 and we have to
examine the following cases for y.

◦ Case 2a. Let 0 < y = x. The conditions x | x+ 1 and x | x+ 2 can only hold simultaneously
for x = 1, giving the solution (1, 1, 2).

◦ Case 2b. Let y = x+1. Then the two conditions are x | x+2 and x+1 | x+2. They cannot
hold simultaneously.

◦ Case 2c. Let y = x + 2. The condition y = x + 2 | x + 2 = z + 1 is trivially fulfilled. The
requirement x | y + 1 = x+ 3 can only hold for x | 3. And, indeed, for either x = 1 or x = 3
the condition is fulfilled and we obtain the solutions (1, 3, 2) and (3, 5, 4).

Summing up, the triples (1, 1, 1), (1, 2, 1), (1, 1, 2), (1, 3, 2) and (3, 5, 4) fulfill all three conditions.
As each of the three numbers can be the minimum, every cyclic permutation of these triples is a

solution as well.
(Lukas Donner)
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