

49 ${ }^{\text {th }}$ Austrian Mathematical Olympiad
Regional Competition (Qualifying Round)—Solutions

Problem 1. Let a and b be nonnegative real numbers satisfying $a+b<2$.
Prove the inequality

$$
\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}} \leq \frac{2}{1+a b}
$$

and determine all a and b yielding equality.
(Gottfried Perz)
Solution. We have

$$
\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}=\frac{2+a^{2}+b^{2}}{\left(1+a^{2}\right)\left(1+b^{2}\right)}=1+\frac{1-a^{2} b^{2}}{\left(1+a^{2}\right)\left(1+b^{2}\right)} .
$$

Via the Cauchy-Schwarz inequality we get $\left(1+a^{2}\right)\left(1+b^{2}\right) \geq(1+a b)^{2}$. Furthermore, the arithmeticgeometric means inequality yields $a b \leq\left(\frac{a+b}{2}\right)^{2}<1$. Therefore, the inequality

$$
1+\frac{1-a^{2} b^{2}}{\left(1+a^{2}\right)\left(1+b^{2}\right)} \leq 1+\frac{1-a^{2} b^{2}}{(1+a b)^{2}}=\frac{2}{1+a b}
$$

follows and we are done. Finally, equality occurs if and only if $0 \leq a=b<1$.
(Karl Czakler)
Problem 2. Let k be a circle with radius r and $A B$ a chord of k such that $A B>r$. Furthermore, let S be the point on the chord $A B$ satisfying $A S=r$. The perpendicular bisector of $B S$ intersects k in the points C and D. The line through D and S intersects k for a second time in point E.

Show that the triangle CSE is equilateral.
(Stefan Leopoldseder)
Solution. In the first part we prove $C S=C E$, afterwards we will prove $\angle S C E=60^{\circ}$.
Since C and D lie on the symmedian of $B S, C B D S$ is a kite with

$$
C S=C B \quad \text { and } \quad \angle C D B=\angle S D C=\angle E D C
$$

The line segments $C B$ and $C E$ therefore have equal length (equal inscribed angles at D). Hence, we have shown that $C S=C B=C E$. Furthermore there exists a circle k_{1} with C containing E, S and B.

The triangle $E S A$ is isosceles with base $E S$, because it is similar to the isosceles triangle $B S D$ with base $B S(\angle S E A=\angle D E A=\angle D B A=\angle D B S$ and $\angle E A S=\angle E A B=\angle E D B=\angle S D B$ follow from the inscribed angle theorem in k). We therefore have $A E=A S=r$, that is, the length of the chord $A E$ is equal to the radius r of the circle k. The central angle for the chord $A E$ is therefore 60°, the inscribed angle $\angle A B E$ is $60 / 2=30^{\circ}$. But now $\angle S B E=\angle A B E=30^{\circ}$ is an inscribed angle in k_{1} for the chord $S E$, hence the central angle is $\angle S C E=2 \cdot 30=60^{\circ}$.
(Stefan Leopoldseder)
Problem 3. Let $n \geq 3$ be a natural number.
Determine the number a_{n} of all subsets of $\{1,2, \ldots, n\}$ consisting of three elements such that one of them is the arithmetic mean of the other two.
(Walther Janous)
Solution. Let $\{a, b, c\}$ be a subset of $M=\{1,2, \ldots, n\}$ such that $a<b<c$. Then $b=(a+c) / 2$ is an element of M if and only if a and c have the same parity.

- Let $n=2 k$ be even. Then the sets $\{a, c\}$ are the $k(k-1) / 2$ subsets of M consisting of the k even as well of the k odd numbers in M. Therefore, the desired number of subsets $\{a, b, c\}$ of M equals $a_{2 k}=k(k-1)$.
- If $n=2 k+1$ is odd, we similarly get $k(k-1) / 2$ subsets $\{a, c\}$ consisting of two even numbers a and c as well as $(k+1) k / 2$ such subsets with odd numbers. Thus, $a_{2 k+1}=k^{2}$.
The two results can be summarized as $a_{n}=\left\lfloor\frac{n}{2}\right\rfloor \cdot\left\lfloor\frac{n-1}{2}\right\rfloor$.
(Gerd Baron)

Problem 4. Let $d(n)$ be the number of all positive divisors of a natural number $n \geq 2$.
Determine all natural numbers $n \geq 3$ such that

$$
d(n-1)+d(n)+d(n+1) \leq 8
$$

(Richard Henner)
Solution. For even numbers $k \geq 6$ we have $d(k) \geq 4$, since $1,2, \frac{k}{2}, k$ are four different divisors. It is clear that $n=3$ is a solution, whereas $n=5$ is not. For odd numbers $n \geq 7$ we have

$$
d(n-1)+d(n)+d(n+1) \geq 4+d(n)+4>8
$$

From now on, let n be even. If the number $k \geq 6$ is divisible by 3 , we have $d(k) \geq 3$, since $1,3, k$ are three different divisors. We check that $n=4$ and $n=6$ satisfy the condition. If $n \geq 8$ and $n-1$ is divisible by 3 , then

$$
d(n-1)+d(n)+d(n+1) \geq 3+4+d(n+1)>8
$$

If, on the other hand, $n \geq 8$ and $n+1$ is divisible by 3 , then we have

$$
d(n-1)+d(n)+d(n+1) \geq d(n-1)+4+3>8
$$

Since among the three successive integers $n-1, n, n+1$ one has to be divisible by 3 , the only remaining case is that n is divisible by 6 . In this case n has the six different divisors $1,2,3, \frac{n}{3}, \frac{n}{2}, n$, i. e. $d(n) \geq 6$ for $n \geq 12$. Thus, we get

$$
d(n-1)+d(n)+d(n+1) \geq d(n-1)+6+d(n+1)>8 .
$$

Hence, there are no further solutions.

