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Problem 1. Let α ∈ Q+. Determine all functions f : Q+ → Q+ such that

f
(x
y
+ y

)
=
f(x)

f(y)
+ f(y) + αx

holds for all x, y ∈ Q+.
Here, Q+ denotes the set of positive rational numbers.

(Walther Janous)

Solution. Setting y = x and y = 1 yields

f(x+ 1) = 1 + f(x) + αx (1)

and
f(x+ 1) =

f(x)

f(1)
+ f(1) + αx, (2)

respectively. Equating (1) and (2) implies

f(x)
(
1− 1

f(1)

)
= f(1)− 1.

As f cannot be constant due to (1), we obtain f(1) = 1. By induction, we get

f(x) =
α

2
x(x− 1) + x for all x ∈ Z+. (3)

In particular, this implies f(2) = α+2 and f(4) = 6α+4. Setting x = 4 and y = 2 in the functional
equation yields

α2 − 2α = 0.

Thus we must have α = 2 in order to obtain solutions. From now on, we only consider this case.
From (3), we obtain f(x) = x2 for x ∈ Z+. By induction, we obtain that for x ∈ Q+ and n ∈ Z+,

from the relation f(x+ n) = (x+ n)2 it follows that f(x) = x2.
Let now a

b
∈ Q+ with a, b ∈ Z+. We set x = a and y = b and obtain

f
(a
b
+ b

)
=
a2

b2
+ b2 + 2a =

(a
b
+ b

)2

.

The above remark implies that f(a
b
) =

(
a
b

)2. It is easily verified that f(x) = x2 is indeed a solution.
Thus there is no solution for α 6= 2 and the solution f(x) = x2 for α = 2.

(Theresia Eisenkölbl)

Problem 2. Let ABC be a triangle. Its incircle meets the sides BC, CA and AB in the points D, E
and F , respectively. Let P denote the intersection point of ED and the line perpendicular to EF and
passing through F , and similarly let Q denote the intersection point of EF and the line perpendicular
to ED and passing through D.

Prove that B is the mid-point of the segment PQ.
(Karl Czakler)
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Figure 1: Problem 2
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Solution. Let H be the common point of PF and QD, as can be seen in Figure 1. Since ∠EDH and
∠HFE are both right angles, HE is a diameter of the incircle of ABC. Now let X denote the common
point of EH and PQ. We see that H is the orthocenter of the triangle EPQ, and X, D and F are the
feet of the altitudes in this triangle. The incenter I of ABC is also the mid-point of an altitude segment.
It follows that points I, F , X and D all lie on the nine-point circle of EPQ.

Because of the right angles in F and D, we know that I, F , D and B lie on a common circle. This
circle is the nine-point circle of EPQ. For the same reason, B is the diametrically opposed point to I
on the nine-point circle of EPQ.

It is well known that the mid-point of each altitude segment lies diametrically opposed to the mid-
point of the corresponding side of the triangle. (Note the right angle in X.) We therefore see that B
must be the midpoint of PQ, as we had set out to show.

(Sara Kropf)

Problem 3. Consider arrangements of the numbers 1 through 64 on the squares of an 8×8 chess board,
where each square contains exactly one number and each number appears exactly once.

A number in such an arrangement is called super-plus-good, if it is the largest number in its row
and at the same time the smallest number in its column.

Prove or disprove each of the following statements:

(a) Each such arrangement contains at least one super-plus-good number.

(b) Each such arrangement contains at most one super-plus-good number.

(Gerhard J. Woeginger)

Solution. (a) This is wrong. For example, one might place the numbers from 1 to 8 along the main
diagonal and the numbers from 57 to 64 along the secondary diagonal:

1 9 10 11 12 13 14 57
15 2 16 17 18 19 58 20
21 22 3 23 24 59 25 26
27 28 29 4 60 30 31 32
33 34 35 61 5 36 37 38
39 40 62 41 42 6 43 44
45 63 46 47 48 49 7 50
64 51 52 53 54 55 56 8.

Therefore the numbers from 1 to 8 are column minima, whereas the numbers from 57 to 64 are
row maxima. Therefore, no number is at the same time column minimum and row maximum, so
no number is super-plus-good.

(b) This is true. Denote the number in the ath row and bth column by F (a, b). Assume that there exist
two super-plus-good numbers, and let (i, j) and (r, s) be the coordinates of these two numbers.
Since all numbers are different, the row maxima and column minima are unique. Therefore no
row and no column may contain more than one super-plus-good number, so i 6= r and j 6= s must
hold. Then

F (i, j) > F (i, s) (because F (i, j) is row maximum),
F (i, j) < F (r, j) (because F (i, j) is column minimum),
F (r, s) > F (r, j) (because F (r, s) is row maximum),
F (r, s) < F (i, s) (because F (r, s) is column minimum).
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These four inequalities lead to the following contradiction:

F (i, j) > F (i, s) > F (r, s) > F (r, j) > F (i, j).

(Gerhard J. Woeginger)

Problem 4. Let a, b, c ≥ −1 be real numbers with a3 + b3 + c3 = 1. Prove that

a+ b+ c+ a2 + b2 + c2 ≤ 4.

When does equality hold?
(Karl Czakler)

Solution. We note that
1− x− x2 + x3 = (1− x)2(1 + x) ≥ 0 (4)

holds for all real numbers x ≥ −1. Here, equality holds iff x = ±1.
Thus we have x+ x2 ≤ 1 + x3 for x = a, b, c and therefore

a+ a2 + b+ b2 + c+ c2 ≤ 1 + a3 + 1 + b3 + 1 + c3 = 3 + 1 = 4.

As equality in (4) holds for ±1 and the sum of the cubes equals 1, equality in the original inequality
holds iff (x, y, z) is a permutation of (1, 1,−1).

(Theresia Eisenkölbl)

Problem 5. Consider a board consisting of n×n unit squares where n ≥ 2. Two cells are called neighbors
if they share a horizontal or vertical border. In the beginning, all cells together contain k tokens. Each
cell may contain one or several tokens or none.

In each turn, choose one of the cells that contains at least one token for each of its neighbors and
move one of those to each of its neighbors. The game ends if no such cell exists.

(a) Find the minimal k such that the game does not end for any starting configuration and choice of
cells during the game.

(b) Find the maximal k such that the game ends for any starting configuration and choice of cells
during the game.

(Theresia Eisenkölbl)

Solution. 1. If each cells contains one token less than the number of its neighbors, the game cannot
even start. On the other hand, if there is one token more then by the pigeon-hole principle there
will always exist at least one cell with sufficient tokens to make the next move.

Therefore, the desired quantity is the sum of all numbers of neighbors minus the number of all
cells plus 1. If one adds 4n cells around the n2 given cells, each original cell has four neighbors
and each new cell has contributed one neighbor.

We get k = (4n2 − 4n)− n2 + 1 = 3n2 − 4n+ 1.
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2. It is easy to see that an unlimited number of turns must eventually have brought tokens to all
cells and that also every pair of neighbors must have exchanged tokens because otherwise tokens
would accumulate in unlimited number in one of the inactive cells.

But each time, a neighboring pair first exchanges tokens, we can reserve this first token to stay
always between these two neighbors. Therefore, the game will certainly end if there are less tokens
then neighboring pairs.

Conversely, if the number of tokens equals the number of neighboring pairs, we can find a never-
ending game in the following way: Color the cells black and white in a checkerboard fashion and
assign to each black cell a number of tokens that equals the number of its neighbors. Now we will
simply choose all the black cells until all tokens are on the white cells, then repeat with the white
cells and then iterate from the start.

The desired quantity is therefore the number of neighboring pairs minus 1. Since the number of
neighboring pairs is half of the first expression in the computation of part 1, we get k = 2n2−2n−1.

(Theresia Eisenkölbl)

Problem 6. Let a, b, c be integers such that

ab

c
+
ac

b
+
bc

a

is an integer.
Prove that each of the numbers

ab

c
,
ac

b
and

bc

a

is an integer.
(Gerhard J. Woeginger)

Solution. Set u := ab/c, v := ac/b and w := bc/a. By assumption, u + v + w is an integer. It is easily
seen that uv + uw + vw = a2 + b2 + c2 and uvw = abc are integers, too.

According to Vieta’s formulæ, the rational numbers u, v, w are the roots of a cubic polynomial
x3 + px2 + qx+ r with integer coefficients. As the leading coefficient is 1, these roots are integers.

(Gerhard J. Woeginger)
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