

$46^{\text {th }}$ Austrian Mathematical Olympiad
 National Competition (Final Round, part 2) - Solutions
 May 20, 2015 and May 21, 2015

Problem 1. Let $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}$ be a function with the following properties:
(i) $f(1)=0$,
(ii) $f(p)=1$ for all prime numbers p,
(iii) $f(x y)=y f(x)+x f(y)$ for all x, y in $\mathbb{Z}_{>0}$.

Determine the smallest integer $n \geq 2015$ that satisfies $f(n)=n$.
(Gerhard J. Woeginger)
Solution. 1. We claim that

$$
\begin{equation*}
f\left(q_{1} \cdots q_{s}\right)=q_{1} \cdots q_{s}\left(\frac{1}{q_{1}}+\cdots+\frac{1}{q_{s}}\right) \tag{1}
\end{equation*}
$$

holds for (not necessarily distinct) prime numbers q_{1}, \ldots, q_{s}.
We prove the claim by induction on s. For $s=0$, the claim reduces to $f(1)=0$, which is true by assumption.
If (1) holds for some s, then

$$
\begin{aligned}
f\left(q_{1} \cdots q_{s} q_{s+1}\right) & =f\left(\left(q_{1} \cdots q_{s}\right) q_{s+1}\right)=q_{s+1} f\left(q_{1} \cdots q_{s}\right)+q_{1} \cdots q_{s} f\left(q_{s+1}\right) \\
& =q_{1} \cdots q_{s+1}\left(\frac{1}{q_{1}}+\cdots+\frac{1}{q_{s}}\right)+q_{1} \cdots q_{s}=q_{1} \cdots q_{s+1}\left(\frac{1}{q_{1}}+\cdots+\frac{1}{q_{s}}+\frac{1}{q_{s+1}}\right) .
\end{aligned}
$$

2. It is easily verified that the function given by (1) fulfills the given functional equation.
3. Let p_{1}, \ldots, p_{r} be distinct primes and $\alpha_{1}, \ldots, \alpha_{r}$ be positive integers. Then collecting equal primes in (1) leads to

$$
f\left(p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}\right)=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} \sum_{j=1}^{r} \frac{\alpha_{j}}{p_{j}} .
$$

4. We now determine all $n \geq 2015$ with $f(n)=n$. We write $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$. Then

$$
\begin{equation*}
\frac{\alpha_{1}}{p_{1}}+\cdots+\frac{\alpha_{r}}{p_{r}}=1 . \tag{2}
\end{equation*}
$$

We write

$$
\frac{\alpha_{1}}{p_{1}}+\cdots+\frac{\alpha_{r-1}}{p_{r-1}}=\frac{a}{p_{1} \cdots p_{r-1}}
$$

for some non-negative integer a. Then

$$
\frac{a}{p_{1} \cdots p_{r-1}}+\frac{\alpha_{r}}{p_{r}}=1 \Longleftrightarrow a p_{r}+\alpha_{r} p_{1} \cdots p_{r-1}=p_{1} \cdots p_{r} .
$$

As p_{r} is coprime to $p_{1} \cdots p_{r-1}$, we conclude that $p_{r} \mid \alpha_{r}$. As (2) implies $\alpha_{r} \leq p_{r}$, we conclude that $r=1$ and $\alpha_{r}=p_{r}$.
Thus $f(n)=n$ holds if and only if $n=p^{p}$ for some prime number p. We have

$$
2^{2}=4<3^{3}=27<2015<5^{5}=3125,
$$

so the smallest such n is 3125 .

Problem 2. We are given a triangle $A B C$. Let M be the mid-point of its side $A B$.
Let P be an interior point of the triangle. We let Q denote the point symmetric to P with respect to M.

Furthermore, let D and E be the common points of $A P$ and $B P$ with sides $B C$ and $A C$, respectively. Prove that points A, B, D and E lie on a common circle if and only if $\angle A C P=\angle Q C B$ holds.
(Karl Czakler)
Solution. Without loss of generality, we assume that P lies either on the segment $C M$ or in the interior of the triangle $A M C$. If this is not the case, we exchange the names of vertices A and B and add the angle $\angle P C Q$ to both given angles.

Let C^{\prime} be the point symmetric to C with respect to M. According to the assumptions of the problem, Q and B are the points symmetric to P and A with respect to M, respectively. Furthermore, let D^{\prime} and E^{\prime} be the common points of the lines $C^{\prime} P$ and $C P$ with the sides $A C$ and $A C^{\prime}$, respectively.

Figure 1: equivalence lemma
We first prove a lemma.
Lemma. Assume that P does not lie on the median $C M$. In this case, the following two facts hold:

1. Angles $\angle A C P$ and $\angle B C Q$ are equal if and only if the quadrilateral $C^{\prime} C D^{\prime} E^{\prime}$ is circumscribed.
2. Angles $\angle C A P$ and $\angle C^{\prime} A Q$ are equal if and only if the quadrilateral $A B D E$ is circumscribed.

Proof.

1. Due to symmetry with respect to M, we have $\angle B C Q=\angle A C^{\prime} P$. Therefore

$$
\begin{array}{ll}
& \angle A C P=\angle B C Q \\
\Longleftrightarrow & \angle A C P=\angle A C^{\prime} P \\
\Longleftrightarrow & \angle D^{\prime} C E^{\prime}=\angle D^{\prime} C^{\prime} E^{\prime} \\
\Longleftrightarrow & C^{\prime} C D^{\prime} E^{\prime} \text { is circumscribed }
\end{array}
$$

because of the equal angles on the chord $D^{\prime} E^{\prime}$.
2. Since $\angle C^{\prime} A Q=\angle P B C$ also holds because of the symmetry, this follows as above.

We first prove that if $A B D E$ is circumscribed, then $\angle A C P=\angle Q C B$.
Let $A B D E$ be circumscribed, as in Figure 2. Since $B Q$ lies symmetric to $A P$ with respect to M,

Figure 2: Problem 2
$A Q B P$ is a parallelogram. Angle $\angle C E D$ is supplementary to $\angle A E D$, which is itself supplementary to $\angle A B C$ because the quadrilateral is circumscribed, and therefore $\angle C E D=\angle A B C$ holds. It follows that triangles $C E D$ and $C B A$ are similar.

We now reflect along the angle bisector of $\angle B C A$ and then perform a homothety, such that D is mapped onto A. Since the triangles $C E D$ and $C B A$ are similar, this must map E onto B. Since $A Q B$ is congruent to $B P A$, which is itself similar to $D P E$, triangle $D P E$ is mapped onto $A Q B$, and therefore P onto Q. It therefore follows that $\angle A C P=\angle Q C B$ holds, as required.

Now, we prove the converse direction under the additional assumption that P does not lie on $C M$. We assume that $\angle A C P=\angle B C Q$. The lemma then implies that $C^{\prime} C D^{\prime} E^{\prime}$ is circumscribed. Applying the result on the first direction on the triangle $C C^{\prime} A$ instead of $A B C$ implies $\angle C^{\prime} A Q=\angle C A P$. It therefore follows from the lemma that $A B D E$ lie on a common circle.

If P lies on $C M$ and $\angle A C P=\angle B C Q$ holds, C, P, M and Q are all points on the angle bisector. It then follows that $A B C$ is isosceles, and since P lies on the axis of symmetry, we see that $E D \| A B$ holds. It follows that $A B D E$ is an isosceles trapezoid, and it is therefore circumscribed.
(Levi Haunschmid, Sara Kropf)

Problem 3. We consider the following operation applied to a positive integer: The integer is represented in an arbitrary base $b \geq 2$, in which it has exactly two digits and in which both digits are different from 0 . Then the two digits are swapped and the result in base b is the new number.

Is it possible to transform every number >10 to a number ≤ 10 with a series of such operations?
(Theresia Eisenkölbl)

Solution. We show that each number >10 can be transformed to a smaller number. In that way, we will eventually reach a number ≤ 10.

If the number $n=2 k+1$ is odd, we choose base $b=k$ with $n=(21)_{k}$. Swapping the two digits, we obtain the new number $(12)_{k}=k+2$. Since $k \geq 5$, the choice of $b=k$ as base is admissible (the digits are smaller than the base) and we have $k+2 \leq 2 k-5+2<2 k+1$ as desired.

If the number $n=2 k$ is even, we choose the base $b=2 k-2$ with $n=(12)_{2 k-2}$ and obtain the new number $(21)_{2 k-2}=4 k-3$. Now we choose the base $k-1$ with $4 k-3=(41)_{k-1}$ and obtain the new number $(14)_{k-1}=k+3$. Since $k>5$, both bases are admissible, and we have $k+3<2 k$ as desired.
(Theresia Eisenkölbl)

Problem 4. Let x, y, z be positive real numbers with $x+y+z \geq 3$. Prove that

$$
\frac{1}{x+y+z^{2}}+\frac{1}{y+z+x^{2}}+\frac{1}{z+x+y^{2}} \leq 1
$$

When does equality hold?
(Karl Czakler)
Solution. By Cauchy's inequality, we have

$$
\begin{equation*}
\left(x+y+z^{2}\right)(x+y+1) \geq(x+y+z)^{2} \tag{3}
\end{equation*}
$$

hence

$$
\frac{1}{x+y+z^{2}} \leq \frac{x+y+1}{(x+y+z)^{2}}
$$

Thus it suffices to show that

$$
\sum_{c y c} \frac{x+y+1}{(x+y+z)^{2}}=\frac{2(x+y+z)+3}{(x+y+z)^{2}} \leq 1 .
$$

This is equivalent to the inequality

$$
(x+y+z)^{2}-2(x+y+z)-3 \geq 0
$$

which holds for $x+y+z \geq 3$.
Equality in (3) holds if and only if $\left(x, y, z^{2}\right)$ und $(x, y, 1)$ are collinear, i.e., $z^{2}=1$ or, equivalently, $z=1$. Cyclic permutation shows that equality holds if and only if $x=y=z=1$.
(Karl Czakler)

Problem 5. Let I be the incenter of triangle $A B C$ and let k be a circle through the points A and B. This circle intersects

- the line $A I$ in points A and P,
- the line $B I$ in points B and Q,
- the line $A C$ in points A and R and
- the line $B C$ in points B and S,
with none of the points A, B, P, Q, R und S coinciding and such that R and S are interior points of the line segments $A C$ and $B C$, respectively.

Prove that the lines $P S, Q R$ and CI meet in a single point.

Figure 3: Problem 5
Solution. We define angles $\alpha=\angle B A C$ and $\beta=\angle C B A$ as usual, cf. Figure 3. Since points A, B, S and R lie on a common circle, we have $\angle B S R=180^{\circ}-\alpha$, and therefore $\angle R S C=\alpha$. Similarly, $\angle C R S=\beta$ also holds.

If P lies in the interior of $A B C$, we have $\angle R S P=\angle R A P=\alpha / 2$. This means that $P S$ bisects the angle $\angle C S R$.

If Q is outside of $A B C$, we have $\angle Q R A=\angle Q B A=\beta / 2$, and in this case $Q R$ also bisects the angle $\angle S R C$.

Independent of the positioning of Q and R with respect to the triangle, we therefore see that $Q R$, $P S$ and $C I$ are the bisectors of the interior angles of $C R S$, and they therefore meet in the incenter of this triangle, as claimed.
(Clemens Heuberger)
Problem 6. Max has 2015 jars labelled with the numbers 1 to 2015 and an unlimited supply of coins. Consider the following starting configurations:
(a) All jars are empty.
(b) Jar 1 contains 1 coin, jar 2 contains 2 coins, and so on, up to jar 2015 which contains 2015 coins.
(c) Jar 1 contains 2015 coins, jar 2 contains 2014 coins, and so on, up to jar 2015 which contains 1 coin.

Now Max selects in each step a number n from 1 to 2015 and adds n coins to each jar except to the jar n.

Determine for each starting configurations in (a), (b), (c), if Max can use a finite, strictly positive number of steps to obtain an equal number of coins in each jar.
(Birgit Vera Schmidt)
Solution. Max can achieve his goal in all three cases by the procedures described below.
Let $N=2015$ be the number of jars.
(a) Let Max select jar j exactly $(N!/ j)$ times. Then jar j will contain

$$
\sum_{k \neq j} k \cdot \frac{N!}{k}=(N-1) \cdot N!
$$

coins which does not depend on j as desired and has clearly needed at least one step.
(b) Let Max select each jar j exactly once. Then jar j will contain $j+\sum_{k \neq j} k=\sum_{k} k$ coins which does not depend on j as desired.
(c) Let Max select jar j exactly $(N!/ j-1)$ times. Then jar j will contain

$$
N+1-j+\sum_{k \neq j} k \cdot\left(\frac{N!}{k}-1\right)=N+1-j+\sum_{k \neq j}(N!-k)=(N-1) N!+(N+1)-\sum_{k} k
$$

coins which does not depend on j as desired.
(Clemens Heuberger)

