

$47^{\text {th }}$ Austrian Mathematical Olympiad<br>National Competition (Final Round, part 1)<br>April 30, 2016

1. Determine the largest constant $C$ such that

$$
\left(x_{1}+x_{2}+\cdots+x_{6}\right)^{2} \geq C \cdot\left(x_{1}\left(x_{2}+x_{3}\right)+x_{2}\left(x_{3}+x_{4}\right)+\cdots+x_{6}\left(x_{1}+x_{2}\right)\right)
$$

holds for all real numbers $x_{1}, x_{2}, \ldots, x_{6}$.
For this $C$, determine all $x_{1}, x_{2}, \ldots, x_{6}$ such that equality holds.
(Walther Janous)
2. We are given an acute triangle $A B C$ with $A B>A C$ and orthocenter $H$. The point $E$ lies symmetric to $C$ with respect to the altitude $A H$. Let $F$ be the intersection of the lines $E H$ and $A C$. Prove that the circumcenter of the triangle $A E F$ lies on the line $A B$.
(Karl Czakler)
3. Consider 2016 points arranged on a circle. We are allowed to jump ahead by 2 or 3 points in clockwise direction.

What is the minimum number of jumps required to visit all points and return to the starting point?
(Gerd Baron)
4. Determine all composite positive integers $n$ with the following property: If $1=d_{1}<d_{2}<$ $\ldots<d_{k}=n$ are all the positive divisors of $n$, then

$$
\left(d_{2}-d_{1}\right):\left(d_{3}-d_{2}\right): \cdots:\left(d_{k}-d_{k-1}\right)=1: 2: \cdots:(k-1) .
$$

(Walther Janous)

Working time: $4 \frac{1}{2}$ hours.
Each problem is worth 8 points.

