

46 ${ }^{\text {th }}$ Austrian Mathematical Olympiad

National Competition (Final Round, part 2, first day)
May 20, 2015

1. Let $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}$ be a function with the following properties:
(i) $f(1)=0$,
(ii) $f(p)=1$ for all prime numbers p,
(iii) $f(x y)=y f(x)+x f(y)$ for all x, y in $\mathbb{Z}_{>0}$.

Determine the smallest integer $n \geq 2015$ that satisfies $f(n)=n$.
(Gerhard J. Woeginger)
2. We are given a triangle $A B C$. Let M be the mid-point of its side $A B$.

Let P be an interior point of the triangle. We let Q denote the point symmetric to P with respect to M.
Furthermore, let D and E be the common points of $A P$ and $B P$ with sides $B C$ and $A C$, respectively.

Prove that points A, B, D and E lie on a common circle if and only if $\angle A C P=\angle Q C B$ holds.
(Karl Czakler)
3. We consider the following operation applied to a positive integer: The integer is represented in an arbitrary base $b \geq 2$, in which it has exactly two digits and in which both digits are different from 0 . Then the two digits are swapped and the result in base b is the new number.

Is it possible to transform every number >10 to a number ≤ 10 with a series of such operations?

Each problem is worth 8 points.

$46^{\text {th }}$ Austrian Mathematical Olympiad
National Competition (Final Round, part 2, second day)
May 21, 2015
4. Let x, y, z be positive real numbers with $x+y+z \geq 3$. Prove that

$$
\frac{1}{x+y+z^{2}}+\frac{1}{y+z+x^{2}}+\frac{1}{z+x+y^{2}} \leq 1
$$

When does equality hold?
(Karl Czakler)
5. Let I be the incenter of triangle $A B C$ and let k be a circle through the points A and B. This circle intersects

- the line $A I$ in points A and P,
- the line $B I$ in points B and Q,
- the line $A C$ in points A and R and
- the line $B C$ in points B and S,
with none of the points A, B, P, Q, R und S coinciding and such that R and S are interior points of the line segments $A C$ and $B C$, respectively.
Prove that the lines $P S, Q R$ and $C I$ meet in a single point.
(Stephan Wagner)

6. Max has 2015 jars labelled with the numbers 1 to 2015 and an unlimited supply of coins. Consider the following starting configurations:
(a) All jars are empty.
(b) Jar 1 contains 1 coin, jar 2 contains 2 coins, and so on, up to jar 2015 which contains 2015 coins.
(c) Jar 1 contains 2015 coins, jar 2 contains 2014 coins, and so on, up to jar 2015 which contains 1 coin.

Now Max selects in each step a number n from 1 to 2015 and adds n coins to each jar except to the jar n.

Determine for each starting configurations in (a), (b), (c), if Max can use a finite, strictly positive number of steps to obtain an equal number of coins in each jar.
(Birgit Vera Schmidt)

Working time: $4 \frac{1}{2}$ hours.
Each problem is worth 8 points.

