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Problem 1. Let a, b and c be real numbers with 0 ≤ a, b, c ≤ 2. Prove that

(a− b)(b− c)(a− c) ≤ 2.

When does equality hold?
(Karl Czakler)

Solution. We order the variables by size:
For a ≥ b ≥ c, all three factors are positive and we have (a− b)(b− c)(a− c) ≥ 0.
For b ≥ c ≥ a and c ≥ a ≥ b, two of the factors are negative and one factor is positive, so we have

again (a− b)(b− c)(a− c) ≥ 0.
For all the other orderings of variables, we have either three negative factors or one negative and two

positive factors. This implies (a− b)(b− c)(a− c) ≤ 0, so the inequality holds for these cases and there
is no case of equality.

Let us now consider a ≥ b ≥ c.
With the AM-GM-inequality, we get

(a− b)(b− c) ≤ (a− b+ b− c)2

4
=

(a− c)2

4
.

So we obtain
(a− b)(b− c)(a− c) ≤ (a− c)2

4
(a− c) =

(a− c)3

4
≤ 23

4
= 2.

The two remaining cases of orderings can be treated analogously.
We see that equality holds for a−c = 2 and a−b = b−c, which implies a = 2, b = 1 and c = 0. Taking

into account the analogous cases, we see that equality holds exactly for the triples (2, 1, 0), (1, 0, 2) and
(0, 2, 1).

(Karl Czakler)

Problem 2. Let ABCD be a rhombus with ∠BAD < 90°. The circle passing through D with center A
intersects the line CD a second time in point E. Let S be the intersection of the lines BE and AC.

Prove that the points A, S,D and E lie on a circle.
(Karl Czakler)

Solution. By the inscribed angle theorem, it is enough to show that ∠SED = ∠SAD.
Since ABCD is a rhombus, we have

∠SAD =
1

2
∠BAD.

Since ABCE is an isosceles trapezoid, we have by symmetry that

∠SED = ∠ECS =
1

2
∠DCB =

1

2
∠BAD,

which finishes the proof.
(Theresia Eisenkölbl)
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Figure 1: Problem 2

Problem 3. Determine all natural numbers n ≥ 2 with the property that there are two permutations
(a1, a2, . . . , an) and (b1, b2, . . . , bn) of the numbers 1, 2, . . . , n such that (a1 + b1, a2 + b2, . . . , an + bn) are
consecutive natural numbers.

(Walther Janous)

Answer. The permutations exist if and only if n is odd.

Solution. We have

(a1 + b1) + (a2 + b2) + . . .+ (an + bn) = 2(1 + 2 + . . .+ n) = n(n+ 1).

On the other hand, there is a natural number N such that

a1 + b1 = N, a2 + b2 = N + 1, . . . , an + bn = N + n− 1

and therefore

(a1 + b1) + (a2 + b2) + . . .+ (an + bn) = nN + (1 + . . .+ (n− 1)) = nN + n(n− 1)/2.

We obtain the equation n(n + 1) = nN + n(n − 1)/2 which becomes N = n + 1 − n−1
2

= n+3
2

.
Therefore, the number N is an integer if and only if n is odd.

It remains to investigate if two permutations with the desired property exist for every odd number
n with n ≥ 3. Let n = 2k + 1 with k ≥ 1.

Experimenting with k = 1 and k = 2 can lead to the following pattern:(
1 k + 2 2 k + 3 3 . . . 2k + 1 k + 1

k + 1 1 k + 2 2 k + 3 . . . k 2k + 1

)
Summing the two rows gives the 2k+1 consecutive numbers k+2, k+3, . . . , 3k+1, 3k+2 as desired.

(Walther Janous)

Problem 4. Determine all pairs (x, y) of positive integers such that for d = gcd(x, y) the equation

xyd = x+ y + d2

holds.
(Walther Janous)

Answer. There are three such pairs, (x, y) = (2, 2), (x, y) = (2, 3) and (x, y) = (3, 2).
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Solution. For x = 1, we get d = 1 and the given equation becomes the contradiction y = y + 2. This
works analogously for y = 1.

Therefore, we can assume x ≥ 2 and y ≥ 2.
We start with the case d = 1 which gives the equation

xy = x+ y + 1 ⇐⇒ (x− 1)(y − 1) = 2.

The possible factorizations 2 = 1 · 2 and 2 = 2 · 1 give the pairs (x, y) = (2, 3) and (x, y) = (3, 2),
respectively, because gcd(x, y) = 1 is satisfied.

Now, we treat the case d ≥ 2. The given equation is equivalent to

1

xd
+

1

yd
+

d

xy
= 1.

Because of xd ≥ 4 and yd ≥ 4, we get

1 ≤ 1

4
+

1

4
+

d

xy
⇐⇒ xy ≤ 2d.

Together with xy ≥ d2, we obtain d = 2, x = y = 2 which gives indeed the third pair (x, y) = (2, 2) with
gcd(2, 2) = 2.

(Walther Janous)
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