

Problem 1. Let a, b and c be real numbers with $0 \leq a, b, c \leq 2$. Prove that

$$
(a-b)(b-c)(a-c) \leq 2 .
$$

When does equality hold?
(Karl Czakler)

Solution. We order the variables by size:
For $a \geq b \geq c$, all three factors are positive and we have $(a-b)(b-c)(a-c) \geq 0$.
For $b \geq c \geq a$ and $c \geq a \geq b$, two of the factors are negative and one factor is positive, so we have again $(a-b)(b-c)(a-c) \geq 0$.

For all the other orderings of variables, we have either three negative factors or one negative and two positive factors. This implies $(a-b)(b-c)(a-c) \leq 0$, so the inequality holds for these cases and there is no case of equality.

Let us now consider $a \geq b \geq c$.
With the AM-GM-inequality, we get

$$
(a-b)(b-c) \leq \frac{(a-b+b-c)^{2}}{4}=\frac{(a-c)^{2}}{4}
$$

So we obtain

$$
(a-b)(b-c)(a-c) \leq \frac{(a-c)^{2}}{4}(a-c)=\frac{(a-c)^{3}}{4} \leq \frac{2^{3}}{4}=2 .
$$

The two remaining cases of orderings can be treated analogously.
We see that equality holds for $a-c=2$ and $a-b=b-c$, which implies $a=2, b=1$ and $c=0$. Taking into account the analogous cases, we see that equality holds exactly for the triples (2, 1, 0), ($1,0,2$) and $(0,2,1)$.
(Karl Czakler)

Problem 2. Let $A B C D$ be a rhombus with $\angle B A D<90^{\circ}$. The circle passing through D with center A intersects the line $C D$ a second time in point E. Let S be the intersection of the lines $B E$ and $A C$.

Prove that the points A, S, D and E lie on a circle.
(Karl Czakler)

Solution. By the inscribed angle theorem, it is enough to show that $\angle S E D=\angle S A D$.
Since $A B C D$ is a rhombus, we have

$$
\angle S A D=\frac{1}{2} \angle B A D .
$$

Since $A B C E$ is an isosceles trapezoid, we have by symmetry that

$$
\angle S E D=\angle E C S=\frac{1}{2} \angle D C B=\frac{1}{2} \angle B A D,
$$

which finishes the proof.

Figure 1: Problem 2

Problem 3. Determine all natural numbers $n \geq 2$ with the property that there are two permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of the numbers $1,2, \ldots, n$ such that $\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$ are consecutive natural numbers.
(Walther Janous)
Answer. The permutations exist if and only if n is odd.
Solution. We have

$$
\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)+\ldots+\left(a_{n}+b_{n}\right)=2(1+2+\ldots+n)=n(n+1)
$$

On the other hand, there is a natural number N such that

$$
a_{1}+b_{1}=N, a_{2}+b_{2}=N+1, \ldots, a_{n}+b_{n}=N+n-1
$$

and therefore

$$
\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)+\ldots+\left(a_{n}+b_{n}\right)=n N+(1+\ldots+(n-1))=n N+n(n-1) / 2 .
$$

We obtain the equation $n(n+1)=n N+n(n-1) / 2$ which becomes $N=n+1-\frac{n-1}{2}=\frac{n+3}{2}$. Therefore, the number N is an integer if and only if n is odd.

It remains to investigate if two permutations with the desired property exist for every odd number n with $n \geq 3$. Let $n=2 k+1$ with $k \geq 1$.

Experimenting with $k=1$ and $k=2$ can lead to the following pattern:

$$
\left(\begin{array}{cccccccc}
1 & k+2 & 2 & k+3 & 3 & \ldots & 2 k+1 & k+1 \\
k+1 & 1 & k+2 & 2 & k+3 & \ldots & k & 2 k+1
\end{array}\right)
$$

Summing the two rows gives the $2 k+1$ consecutive numbers $k+2, k+3, \ldots, 3 k+1,3 k+2$ as desired.
(Walther Janous)
Problem 4. Determine all pairs (x, y) of positive integers such that for $d=\operatorname{gcd}(x, y)$ the equation

$$
x y d=x+y+d^{2}
$$

holds.
(Walther Janous)
Answer. There are three such pairs, $(x, y)=(2,2),(x, y)=(2,3)$ and $(x, y)=(3,2)$.

Solution. For $x=1$, we get $d=1$ and the given equation becomes the contradiction $y=y+2$. This works analogously for $y=1$.

Therefore, we can assume $x \geq 2$ and $y \geq 2$.
We start with the case $d=1$ which gives the equation

$$
x y=x+y+1 \Longleftrightarrow(x-1)(y-1)=2 .
$$

The possible factorizations $2=1 \cdot 2$ and $2=2 \cdot 1$ give the pairs $(x, y)=(2,3)$ and $(x, y)=(3,2)$, respectively, because $\operatorname{gcd}(x, y)=1$ is satisfied.

Now, we treat the case $d \geq 2$. The given equation is equivalent to

$$
\frac{1}{x d}+\frac{1}{y d}+\frac{d}{x y}=1 .
$$

Because of $x d \geq 4$ and $y d \geq 4$, we get

$$
1 \leq \frac{1}{4}+\frac{1}{4}+\frac{d}{x y} \Longleftrightarrow \quad x y \leq 2 d
$$

Together with $x y \geq d^{2}$, we obtain $d=2, x=y=2$ which gives indeed the third pair $(x, y)=(2,2)$ with $\operatorname{gcd}(2,2)=2$.

