

49 ${ }^{\text {th }}$ Austrian Mathematical Olympiad

Regional Competition (Qualifying Round)

5th April 2018

1. Let a and b be nonnegative real numbers satisfying $a+b<2$.

Prove the inequality

$$
\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}} \leq \frac{2}{1+a b}
$$

and determine all a and b yielding equality.
(Gottfried Perz)
2. Let k be a circle with radius r and $A B$ a chord of k such that $A B>r$. Furthermore, let S be the point on the chord $A B$ satisfying $A S=r$. The perpendicular bisector of $B S$ intersects k in the points C and D. The line through D and S intersects k for a second time in point E.
Show that the triangle $C S E$ is equilateral.
(Stefan Leopoldseder)
3. Let $n \geq 3$ be a natural number.

Determine the number a_{n} of all subsets of $\{1,2, \ldots, n\}$ consisting of three elements such that one of them is the arithmetic mean of the other two.
(Walther Janous)
4. Let $d(n)$ be the number of all positive divisors of a natural number $n \geq 2$.

Determine all natural numbers $n \geq 3$ such that

$$
d(n-1)+d(n)+d(n+1) \leq 8 .
$$

