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Problem 1. Determine the largest constant C such that

(x1 + x2 + · · ·+ x6)
2 ≥ C · (x1(x2 + x3) + x2(x3 + x4) + · · ·+ x6(x1 + x2))

holds for all real numbers x1, x2, . . . , x6.
For this C, determine all x1, x2, . . . , x6 such that equality holds.

(Walther Janous)

Solution. We rewrite the right-hand side

x1x2 + x1x3 + x2x3 + x2x4 + x3x4 + x3x5 + x4x5 + x4x6 + x5x6 + x1x5 + x1x6 + x2x6

as
(x1 + x4)(x2 + x5) + (x2 + x5)(x3 + x6) + (x3 + x6)(x1 + x4).

Using the substitution X = x1 + x4, Y = x2 + x5 and Z = x3 + x6, the inequality reads

(X + Y + Z)2 ≥ C · (XY + Y Z + ZX),

where X, Y and Z are arbitrary real numbers.
For X = Y = Z = 1 we get 9 ≥ 3C, i.e., C ≤ 3.
We now prove that

(X + Y + Z)2 ≥ 3(XY + Y Z + ZX).

Expanding yields
X2 + Y 2 + Z2 ≥ XY + Y Z + ZX.

This is equivalent to
(X − Y )2 + (Y − Z)2 + (Z −X)2 ≥ 0

with equality for X − Y = Y − Z = Z −X = 0, i.e., X = Y = Z, thus x1 + x4 = x2 + x5 = x3 + x6.
(Walther Janous)

Problem 2. We are given an acute triangle ABC with AB > AC and orthocenter H. The point E lies
symmetric to C with respect to the altitude AH. Let F be the intersection of the lines EH and AC.
Prove that the circumcenter of the triangle AEF lies on the line AB.

(Karl Czakler)

Solution. See Figure 1.
Let θ be the angle between AF and the tangent t at A to the circumcircle of AEF . By the inscribed

angle theorem, we have ∠FEA = θ. Due to the reflection, we have ∠ACH = ∠FEA = θ. Because of
∠ACH = θ, the tangent t is parallel to CH and thus orthogonal to AB. Therefore, the circumcenter of
the triangle AEF lies on AB.

Comment: This result also holds for obtuse triangles.
(Konstantin Mark, Clemens Heuberger)
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Figure 1: Problem 2

Problem 3. Consider 2016 points arranged on a circle. We are allowed to jump ahead by 2 or 3 points
in clockwise direction.

What is the minimum number of jumps required to visit all points and return to the starting point?
(Gerd Baron)

Solution. Clearly, it takes at least 2016 jumps to visit all points. It is impossible to use only jumps of
length 2 or only jumps of length 3 because this would confine us to a single residue class modulo 2 or 3,
respectively.

If the problem could be solved with 2016 jumps, the total distance covered by these jumps would be
strictly between 2 · 2016 and 3 · 2016 which makes a return to the original point impossible. Therefore,
at least 2017 jumps are required.

This is indeed possible, for example with the following sequence of points on the circle.

0, 3, 6, . . . , 2013, 2015, 2, 5, . . . , 2012, 2014, 1, 4, . . . , 2011, 2013, 0.

(Theresia Eisenkölbl)

Problem 4. Determine all composite positive integers n with the following property: If 1 = d1 < d2 <
. . . < dk = n are all the positive divisors of n, then

(d2 − d1) : (d3 − d2) : · · · : (dk − dk−1) = 1 : 2 : · · · : (k − 1).

(Walther Janous)

Solution. Since n is a composite number, we have k ≥ 3.
Let d2 = p be the smallest prime that divides n. We show by induction that

dj =
j(j − 1)

2
p− (j − 2)(j + 1)

2
, j = 1, 2, . . . , k.
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This is clearly true for j = 1 and the induction step follows from dj−dj−1 = (j−1)(d2−d1) = (j−1)(p−1)
and 1 + 2 + 3 + · · ·+ (j − 1) = j(j−1)

2
.

If we apply this formula to dk−1 =
n
p
= dk

d2
and multiply by 2p, we get

(k − 1)(k − 2)p2 − (k − 3)kp = k(k − 1)p− (k − 2)(k + 1)

⇔ (k − 1)(k − 2)p2 − 2(k − 2)kp+ (k − 2)(k + 1) = 0

⇔ (k − 1)p2 − 2kp+ (k + 1) = 0.

The solutions of this quadratic equation are p = 1 and p = k+1
k−1

= 1 + 2
k−1

. Since both options are at
most 2, the only possibility is p = 2, k = 3 and n = 4. Since n = 4 has the required property, this is the
only solution.

(Walther Janous)
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