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Problem 1. Let α be a nonzero real number.
Determine all functions f : R → R with

f(f(x+ y)) = f(x+ y) + f(x)f(y) + αxy

for all x, y ∈ R.
(Walther Janous)

Answer. For α = −1, the identity is the only solution. For other values of α, there is no solution.

Solution. The functional equation immediately implies that f cannot be a constant function, as αxy
would then have to be constant. In the following, we let (F ) denote the given functional equation.

Setting y = 1, (F ) gives us

f(f(x+ 1)) = f(x+ 1) + f(x)f(1) + αx. (1)

For x = 1 we therefore have
f(f(2)) = f(2) + f(1)2 + α. (2)

and replacing x by x+ 1 then yields

f(f(x+ 2)) = f(x+ 2) + f(x+ 1)f(1) + α(x+ 1). (3)

For y = 2, (F ) yields
f(f(x+ 2)) = f(x+ 2) + f(x)f(2) + 2αx. (4)

For x = 0, we therefore obtain
f(f(2)) = f(2) + f(0)f(2).

Together with (2) this gives us
f(0)f(2) = f(1)2 + α. (5)

If we now take (F ) and let y = 0 and replace x by x+ 1, we obtain

f(f(x+ 1)) = f(x+ 1) + f(x+ 1)f(0). (6)

From (1) and (6) we have
f(x+ 1)f(0) = f(x)f(1) + αx (7)

and from (3) and (4)
f(x+ 1)f(1) = f(x)f(2) + αx− α. (8)

If we multiply (7) by f(2) and (8) by f(1), we obtain

f(x+ 1)f(0)f(2) = f(x)f(1)f(2) + αf(2)x

or
f(x+ 1)f(1)2 = f(x)f(1)f(2) + αf(1)x− αf(1).

After subtracting and taking (5) into consideration, we therefore have

αf(x+ 1) = α(f(2)− f(1))x+ αf(1),
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and thus (since α ̸= 0)
f(x+ 1) = (f(2)− f(1))x+ f(1).

We see that f is a linear function, and f(x) = ax+ b with a ̸= 0. Substitution then gives us

a2x+ a2y + ab+ b = ax+ ay + b+ a2xy + abx+ aby + b2 + αxy.

For y = 0 we obtain
a2x+ ab = (a+ ab)x+ b2, x ∈ R,

an therefore by comparing coefficients a2 = a + ab, or a = 1 + b, and ab = b2. We therefore have
(1 + b)b = b2, and thus b = 0, and a = 1. For the only possible function f(x) = x, we obtain from (F )
that (1 + α)xy = 0, x, y ∈ R, or α = −1 must hold.

(Walther Janous)

Problem 2. Let ABC be a triangle, and O its circumcenter. The circumcircle of triangle AOC shall
intersect the segment BC in points C and D and the segment AB in points A and E.

Prove that triangles BDE and AOC have equal circumradii.
(Karl Czakler)

Solution. In the circumcircle of triangle ABC we have ∠COA = 2∠CBA. In the circumcircle of ADC
we therefore have ∠CDA = ∠COA = 2∠CBA. The angle ∠CDA is an external angle in triangle ABD,
and we therefore obtain ∠CBA + ∠BAD = ∠CDA = 2∠CBA, and thus ∠BAD = ∠CBA. In the
circumcircle of triangle AOC we obtain ∠BAD = ∠EAD on the chord ED. The angles ∠CBA =
∠DBE are equal in the circumcircle of triangle BDE on the same chord ED. Since the chords and
subtended angles are equal in both circles, they must have the same radii, as claimed.
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(Theresia Eisenkölbl)
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Problem 3. Alice and Bob play a game, in which they take turns drawing segments of length 1 in the
Euclidean plane. Alice begins, drawing the first segment, and from then on, each segment must start at
the endpoint of the previous segment. It is not permitted to draw the segment lying over the preceding
one. If the new segment shares at least one point - except for its starting point - with one of the previously
drawn segments, one has lost.

a) Show that both Alice and Bob could force the game to end, if they don’t care who wins.

b) Is there a winning strategy for one of them?

(Michael Reitmeir)

Solution. a) In the following, let An denote the end-point of the segment that Alice drew in her n-th turn
(assuming the game has not ended by then), and let Bn denote the end-point of Bob’s n-th segment.
Furthermore, let B0 denote the starting point of Bob’s first segment.

If Alice can force an end to the game, so can Bob by applying the same strategy and ignoring Alice’s
first move. It is therefore sufficient to prove that Alice can force an end.

Bob must always choose the n-th end-point Bn on the circle with radius 1 and center in An. We
name this circle kn. Furthermore, let ln denote the line perpendicular to Bn−1An through An. We now
note that if Bob chooses his end-point in such a way that his segment forms an acute angle with the
preceding segment (such that Bn lies on the same side of ln as the segment Bn−1An), Alice can end the
game with her next move. Now let hn denote the part of kn on the opposite side of ln from Bn−1An

(including the intersection points of ln and kn). In the following, we only need to consider the case in
which Bob chooses the point Bn on the semi-circle hn.

Let B denote the set of all points, whose distance from the first drawn segment is less than 1. The
set B consists of a 1 × 2 rectangle and the interior of two semi-circles. Bob chooses B1 on h1. In the
next move, Alice can choose A2 as close as she wishes to A1. Let r denote the distance between A2 and
A1. We now consider two cases.

Case 1: B0, A1, B1 do not lie on a common line.

B0
A1

B1

A2

Figure 1: Problem 3

If Alice chooses A2 = A1 (which she is not allowed to do, according to the rules), h2 will overlap
with the semicircular edge of B at one end. The other end of h2 must therefore lie in the interior of the
rectangular section of B, which means that this end must have a positive distance from the edge of B.
Since Alice can choose an arbitrarily small value of r, she can (for reasons of continuity) move the point
A2 away slightly from A1 towards the rectangular section of B such that h2 comes to lie completely in
the interior of B. This means that B2 will lie completely in the interior of B, and all its points thus have
a distance less than 1 from the first segment. Alice can therefore certainly choose her next segment in
such a way that it intersects the first segment.

Fall 2: B0, A1, B1 lie on a common line.
In this case, Alice cannot choose A2 in such a way that h2 lies completely in the interior of B. If Bob
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Figure 2: Problem 3

chooses B2 in the interior of B, Alice can choose her next segement in such a way that it intersects the
first segment, ending the game. We can therefore assume that Bob chooses B2 on h2 outside of B. In
this case, Alice can choose her next point A3 in such a way that its distance from A2 is at most r. By
the triangle inequality, the distance from A3 to A1 is then at most 2r. If r = 0 (which is not allowed
by the rules), we would have A3 = A1. In this case, analogously to the previous case, h3 would overlap
with the semicircular edge of B, and the other end would lie in the interior of the rectangular part of
B with a positive distance from the edge. Since Alice can choose 2r arbitrarily small, she can (again
by reasons of continuity) move A3 slightly away from A1 toward the part of h3 in the interior of the
rectangular section of B, such that h3 comes to lie completely in the interior of B. Then B3 lies in the
interior of B, and Alice can choose her next segment in such a way that it intersects the first segment.

b) We will show that each of the players can always make a move with which they do not lose.
This is trivially the case for the first two moves, so we assume without loss of generality that at least
two segments have already been drawn. Let s denote the last segment drawn and t the one drawn
immediately before that. Furthermore, let S denote the union of all segments that were drawn before
s and t. Let r denote the smallest distance between any of the points of s and S. Since s and S are
assumed to not have any common points, we certainly have r > 0.

S

t

s

B

Figure 3: Problem 3

Now let B denote the set of all points x, whose distance from s ist less than r
2
. B certainly does

not contain any point from S. The only segments among those that have been drawn to this point that
contain any of the points in B are thus s and t. Extending s to a line, we divide the euclidean plane into
two half-planes, one of which certainly does not include any of the points of t. We choose this half-plane
and determine its intersection with B. We can certainly find a segment of length 1 in this part of B,
with one end in the end of s, that does not intersect either t or any of the other segments.

(Michael Reitmeir, Thomas Speckhofer)
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Problem 4. Written on a blackboard are the 2023 numbers

2023, 2023, . . . , 2023.

The numbers on the blackboard are now modified, in a sequence of moves. In each move, two numbers
on the blackboard—call them x and y—are chosen, deleted, and replaced by the single number x+y

4
. Such

moves are carried out until there is only one number left on the blackboard.
Prove that this number is always greater than 1.

(Walther Janous)

Solution. The expression x+y
4

reminds us of the arithmetic mean. By the AM-HM inequality, we have

x+ y

2
≥ 2

1
x
+ 1

y

,

or
1

x
+

1

y
≥ 1

(x+ y)/4
.

This inequality leads us to consider an argument concerning the reciprocals of the numbers on the board,
as the sum of the reciprocals of two of these numbers is at least as large as the reciprocal of the number
replacing them. This value remains the same if and only if the two chosen numbers are equal, and is
otherwise larger. At the beginning, the sum of all reciprocals is

1

2023
+

1

2023
+ . . .+

1

2023
=

2023

2023
= 1.

This implies the claim, since there is an odd number of 2023s in the beginning that cannot be divided
into pairs, so one of them has to be part of a pair with different numbers.

(Walther Janous)

Problem 5. Let ABC be an acute triangle, with AC ̸= BC. Let M be the midpoint of segment AB.
Let H be the orthocenter of triangle ABC, D the footpoint of the altitude through A on BC and E the
footpoint of the altitude through B on AC.

Prove that lines AB, DE and the orthogonal to MH through C intersect in a point S.
(Karl Czakler)
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Solution.

A B
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F

H2 H1

Let ∠ACB = γ and F be the foot of C on MH. We will first demonstrate that F lies on the
circumcircle k of triangle ABC.

Let H1 denote the symmetric point to H with respect to M . The quadrilateral AH1BH is a
parallelogram, and since we have ∠AHB = ∠AH1B = 180◦−γ, the point H1 must lie on the circumcircle
k of ABC. Reflecting point H on triangle side AB yields point H2, and it is well known that this point
also lies on k. The line H1H2 is parallel to AB, and thus perpendicular to CH2. It follows that CH1 is
a diameter of the circumcircle k, and it follows that F lies on k.
In summary, we have:

• Points A,B,D,E lie on a common circle k1.

• Points C,E,H,D, F lie on a common circle k2.

• Points A,B, F, C lie on the circumcircle k.

The point S is thus the radical center of these three circles, completing the proof.
(Karl Czakler, Josef Greilhuber)

Problem 6. Determine whether there exists a real number r such that the equation

x3 − 2023x2 − 2023x+ r = 0

has three different rational solutions.
(Walther Janous)

Solution. Let N = 2023. We assume that the equation x3 − Nx2 − Nx + r = 0 has three rational
solutions a

k
, b
k
, c
k
, where a, b, c are integers and k is a positive integer with gcd(a, b, c, k) = 1. According

to Vieta we have a
k
+ b

k
+ c

k
= N and b

k
· c
k
+ a

k
· c
k
+ a

k
· b
k
= −N . This is equivalent to

a+ b+ c = kN ⇒ a2 + b2 + c2 + 2(bc+ ac+ ab) = k2N2

bc+ ac+ ab = −k2N ⇒ a2 + b2 + c2 = k2N2 + 2k2N = k2N(N + 2).
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In a next step, we recognize that k cannot be even. If it were, we would have a2+b2+c2 ≡ 0 mod 4,
from which we obtain that a, b, c are all even, as 0 and 1 are the only quadratic residues modulo 4. This
contradicts the assumption that gcd(a, b, c, k) = 1.

For odd values of k, we have k2 ≡ 1 mod 8. Furthermore, we have N = 2023 ≡ 7 mod 8. From
this, we obtain k2N(N + 2) ≡ 1 · 7 · 1 ≡ 7 mod 8. The sum of three perfect squares can never be
congruent to 7 modulo 8, which can easily be verified by adding all possible combinations (the only
quadratic residues modulo 8 are 0, 1 and 4). It follows that the above equation can never have three
rational solutions.

(Josef Greilhuber)
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